Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Neurol ; 15: 1376104, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38645748

RESUMO

Alzheimer's disease (AD), the most common etiology of dementia in older adults, is projected to double in prevalence over the next few decades. Current treatments for AD manage symptoms or slow progressive decline, but are accompanied by significant inconvenience, risk, and cost. Thus, a better understanding of the risk factors and pathophysiology of AD is needed to develop novel prevention and treatment strategies. Aging is the most important risk factor for AD. Elucidating molecular mechanisms of aging may suggest novel therapeutic targets. While aging is inevitable, it may be accelerated by caloric excess and slowed by caloric restriction (CR) or intermittent fasting. As such, CR may slow aging and reduce the risk of all diseases of aging, including dementia due to AD. The literature on CR, intermittent fasting, and treatment with polyphenols such as resveratrol-a pharmacologic CR-mimetic-supports this hypothesis based on clinical outcomes as well as biomarkers of aging and AD. More studies exploring the role of CR in regulating aging and AD progression in man are needed to fill gaps in our understanding and develop safer and more effective strategies for the prevention and treatment of AD.

2.
Nat Commun ; 14(1): 7881, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38036504

RESUMO

The impacts of large terrestrial volcanic eruptions are apparent from satellite monitoring and direct observations. However, more than three quarters of all volcanic outputs worldwide lie submerged beneath the ocean, and the risks they pose to people, infrastructure, and benthic ecosystems remain poorly understood due to inaccessibility and a lack of detailed observations before and after eruptions. Here, comparing data acquired between 2015 - 2017 and 3 months after the January 2022 eruption of Hunga Volcano, we document the far-reaching and diverse impacts of one of the most explosive volcanic eruptions ever recorded. Almost 10 km3 of seafloor material was removed during the eruption, most of which we conclude was redeposited within 20 km of the caldera by long run-out seafloor density currents. These powerful currents damaged seafloor cables over a length of >100 km, reshaped the seafloor, and caused mass-mortality of seafloor life. Biological (mega-epifaunal invertebrate) seafloor communities only survived the eruption where local topography provided a physical barrier to density currents (e.g., on nearby seamounts). While the longer-term consequences of such a large eruption for human, ecological and climatic systems are emerging, we expect that these previously-undocumented refugia will play a key role in longer-term ecosystem recovery.

3.
Science ; 381(6662): 1085-1092, 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37676954

RESUMO

Volcanic eruptions on land create hot and fast pyroclastic density currents, triggering tsunamis or surges that travel over water where they reach the ocean. However, no field study has documented what happens when large volumes of erupted volcanic material are instead delivered directly into the ocean. We show how the rapid emplacement of large volumes of erupted material onto steep submerged slopes triggered extremely fast (122 kilometers per hour) and long-runout (>100 kilometers) seafloor currents. These density currents were faster than those triggered by earthquakes, floods, or storms, and they broke seafloor cables, cutting off a nation from the rest of the world. The deep scours excavated by these currents are similar to those around many submerged volcanoes, providing evidence of large eruptions at other sites worldwide.

4.
Sci Adv ; 8(20): eabj3220, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35584216

RESUMO

Until recently, despite being one of the most important sediment transport phenomena on Earth, few direct measurements of turbidity currents existed. Consequently, their structure and evolution were poorly understood, particularly whether they are dense or dilute. Here, we analyze the largest number of turbidity currents monitored to date from source to sink. We show sediment transport and internal flow characteristic evolution as they runout. Observed frontal regions (heads) are fast (>1.5 m/s), thin (<10 m), dense (depth averaged concentrations up to 38%vol), strongly stratified, and dominated by grain-to-grain interactions, or slower (<1 m/s), dilute (<0.01%vol), and well mixed with turbulence supporting sediment. Between these end-members, a transitional flow head exists. Flow bodies are typically thick, slow, dilute, and well mixed. Flows with dense heads stretch and bulk up with dense heads transporting up to 1000 times more sediment than the dilute body. Dense heads can therefore control turbidity current sediment transport and runout into the deep sea.

5.
Geophys Res Lett ; 46(20): 11310-11320, 2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31894170

RESUMO

Rivers (on land) and turbidity currents (in the ocean) are the most important sediment transport processes on Earth. Yet how rivers generate turbidity currents as they enter the coastal ocean remains poorly understood. The current paradigm, based on laboratory experiments, is that turbidity currents are triggered when river plumes exceed a threshold sediment concentration of ~1 kg/m3. Here we present direct observations of an exceptionally dilute river plume, with sediment concentrations 1 order of magnitude below this threshold (0.07 kg/m3), which generated a fast (1.5 m/s), erosive, short-lived (6 min) turbidity current. However, no turbidity current occurred during subsequent river plumes. We infer that turbidity currents are generated when fine sediment, accumulating in a tidal turbidity maximum, is released during spring tide. This means that very dilute river plumes can generate turbidity currents more frequently and in a wider range of locations than previously thought.

6.
Sci Rep ; 8(1): 1146, 2018 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-29348427

RESUMO

Volcanic flank collapses and explosive eruptions are among the largest and most destructive processes on Earth. Events at Mount St. Helens in May 1980 demonstrated how a relatively small (<5 km3) flank collapse on a terrestrial volcano could immediately precede a devastating eruption. The lateral collapse of volcanic island flanks, such as in the Canary Islands, can be far larger (>300 km3), but can also occur in complex multiple stages. Here, we show that multistage retrogressive landslides on Tenerife triggered explosive caldera-forming eruptions, including the Diego Hernandez, Guajara and Ucanca caldera eruptions. Geochemical analyses were performed on volcanic glasses recovered from marine sedimentary deposits, called turbidites, associated with each individual stage of each multistage landslide. These analyses indicate only the lattermost stages of subaerial flank failure contain materials originating from respective coeval explosive eruption, suggesting that initial more voluminous submarine stages of multi-stage flank collapse induce these aforementioned explosive eruption. Furthermore, there are extended time lags identified between the individual stages of multi-stage collapse, and thus an extended time lag between the initial submarine stages of failure and the onset of subsequent explosive eruption. This time lag succeeding landslide-generated static decompression has implications for the response of magmatic systems to un-roofing and poses a significant implication for ocean island volcanism and civil emergency planning.

7.
Nat Commun ; 8(1): 2061, 2017 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-29233984

RESUMO

Volcanic island inception applies large stresses as the ocean crust domes in response to magma ascension and is loaded by eruption of lavas. There is currently limited information on when volcanic islands are initiated on the seafloor, and no information regarding the seafloor instabilities island inception may cause. The deep sea Madeira Abyssal Plain contains a 43 million year history of turbidites among which many originate from mass movements in the Canary Islands. Here, we investigate the composition and timing of a distinctive group of turbidites that we suggest represent a new unique record of large-volume submarine landslides triggered during the inception, submarine shield growth, and final subaerial emergence of the Canary Islands. These slides are predominantly multi-stage and yet represent among the largest mass movements on the Earth's surface up to three or more-times larger than subaerial Canary Islands flank collapses. Thus whilst these deposits provide invaluable information on ocean island geodynamics they also represent a significant, and as yet unaccounted, marine geohazard.

8.
Phys Sportsmed ; 2(11): 83, 1974 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29251077
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...